Elementary Row Operations and Linear Equations

Linear Algebra
Department of Computer Engineering
Sharif University of Technology
Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Matrix Multiplication

Elementary Row Operations

Elementary Matrices

Linear Equations

Matrix Multiplication

- By $A \in \mathbb{R}^{m \times n}$ we denote a matrix with m rows and n columns, where the entries of A are real numbers.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right]
$$

Matrix-Vector Multiplication

- If we write A by rows, then we can express $A x$ as,

$$
A \in \mathbb{R}^{m \times n} \quad y=A x=\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right] x=\left[\begin{array}{c}
a_{1}^{T} x \\
a_{2}^{T} x \\
\vdots \\
a_{m}^{T} x
\end{array}\right] . \quad a_{i}^{T} x=\sum_{j=1}^{n} a_{i j} x
$$

- If we write A by columns, then we have:

$$
y=A x=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[a_{1}\right] x_{1}+\left[a_{2}\right] x_{2}+\cdots+\left[a_{n}\right] x_{n} .
$$

- y is a linear combination of the columns A.
columns of A are linearly independent if $A x=0$ implies $x=0$

It is also possible to multiply on the left by a row vector.

- If we write A by columns, then we can express $x^{T} A$ as,

$$
y^{T}=x^{T} A=x^{T}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{llll}
x^{T} a_{1} & x^{T} a_{2} & \cdots & x^{T} a_{n}
\end{array}\right]
$$

- expressing A in terms of rows we have:

$$
\begin{aligned}
& y^{T}=x^{T} A=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right]\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right] \\
& =x_{1}\left[\begin{array}{lll}
- & a_{1}^{T} & -
\end{array}\right]+x_{2}\left[\begin{array}{lll}
- & a_{2}^{T} & -
\end{array}\right]+\cdots+x_{m}\left[\begin{array}{lll}
- & a_{m}^{T} & -
\end{array}\right] \\
& \text { - } y^{T} \text { is a linear combination of the rows of } \mathrm{A} \text {. }
\end{aligned}
$$

- Properties
- $A(u+v)=A u+A v$
- $(A+B) u=A u+B u$
- $(\alpha A) u=\alpha(A u)=A(\alpha u)=\alpha A u$
- $0 u=0$
- $A 0=0$
- $\quad I u=u$

Matrix-Vector Multiplication

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right]
$$

Example: Write in matrix-vector multiplication

- Column $j: a_{j}=$
- Row $i: a_{i}^{T}=$
- Vector sum of rows of $A=$
- Vector sum of columns of $A=$

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
2 & 0 & -2
\end{array}\right]
$$

Definition

Let A be an $m \times n$ matrix over the field F and let B be an $n \times p$ matrix over F. The product $A B$ is the $m \times p$ matrix C whose i, j entry is:

$$
C_{i j}=\sum_{r=1}^{n} A_{i r} B_{r j}
$$

Matrix-Matrix Multiplication

- $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p} \rightarrow \mathbb{R}^{m \times p}$
- a_{i} rows of A, b_{j} cols of B

$$
\begin{gathered}
C=A B \quad \begin{array}{c}
\text { for } 1 \leq i \leq m, 1 \leq j \leq p \\
\text { inner product }\left(a_{i}, b_{j}\right)
\end{array} \\
C_{i j}=a_{i}^{T} b_{j}
\end{gathered}
$$

Example

1. As a set of vector-vector products

$$
C=A B=\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
b_{1} & b_{2} & \cdots & b_{p} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
a_{1}^{T} b_{1} & a_{1}^{T} b_{2} & \cdots & a_{1}^{T} b_{p} \\
a_{2}^{T} b_{1} & a_{2}^{T} b_{2} & \cdots & a_{2}^{T} b_{p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m}^{T} b_{1} & a_{m}^{T} b_{2} & \cdots & a_{m}^{T} b_{p}
\end{array}\right]
$$

2. As a sum of outer products

$$
C=A B=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & b_{1}^{T} & - \\
- & b_{2}^{T} & - \\
& \vdots & \\
- & b_{n}^{T} & -
\end{array}\right]=\sum_{i=1}^{n} a_{i} b_{i}^{T}
$$

3. As a set of matrix-vector products.

$$
C=A B=A\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
b_{1} & b_{2} & \cdots & b_{p} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
A b_{1} & A b_{2} & \cdots & A b_{p} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Here the th column of C is given by the matrix-vector product with the vector on the right, $c_{i}=A b_{i}$. These matrix-vector products can in turn be interpreted using both viewpoints given in the previous subsection.
4. As a set of vector-matrix products.

$$
C=A B=\left[\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
& \vdots & \\
- & a_{m}^{T} & -
\end{array}\right] B=\left[\begin{array}{ccc}
- & a_{1}^{T} B & - \\
- & a_{2}^{T} B & - \\
& \vdots & \\
- & a_{m}^{T} B & -
\end{array}\right]
$$

- Properties:
- Associative

$$
(A B) C=A(B C)
$$

- Distributive

$$
A(B+C)=A B+A C
$$

- NOT commutative

$$
\begin{aligned}
& \quad A B \neq B A \\
& \text { - Dimensions may not even be conformable }
\end{aligned}
$$

Matrix-Matrix Multiplication

Theorem

If A, B, C are matrices over the field F such that the products $B C$ and $A(B C)$ is defined, then so are the products $A B,(A B) C$ and

$$
A(B C)=(A B) C
$$

Proof:

Note

Linear combinations of linear combinations of the rows of C are again linear combinations of the rows of C

- A^{k} : repeated multiplication of a square matrix

$$
A^{1}=A, A^{2}=A A, \ldots, A^{k}=\underset{k \text { matrices }}{A A \cdots A}
$$

- Properties:

$$
\begin{aligned}
& \circ A A^{k}=A^{i+k} \quad \text { where } \mathrm{j} \text { and } \mathrm{k} \text { are non-negative integers and } A 0 \text { is assumed to be I } \\
& \circ(A)^{k}=A^{* k}
\end{aligned}
$$

- For diagonal matrices:

$$
D=\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right] \Rightarrow D^{k}=\left[\begin{array}{cccc}
d_{1}^{k} & 0 & \cdots & 0 \\
0 & d_{2}^{k} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & d_{n}^{k}
\end{array}\right]
$$

Elementary Row Operations

Gaussian Elimination: Elementary Row Operations

- Elementary Row Operations

1. Scaling: Multiply all entries in a row by a nonzero scalar.
2. Replacement: Replace one row by the sum of itself and a multiple of another row.
3. Interchange: Interchange two rows.

- Elementary Row Operation is a special type of function e on $m \times n$ matrix A and gives an $m \times n$ matrix $e(A)$

1. Scaling : $e(A)_{\mathrm{ij}}=\mathrm{cA}_{\mathrm{ij}}$
2. Replacement: $e(A)_{\mathrm{ij}}=A_{i j}+\mathrm{cA}_{\mathrm{kj}}$
3. Interchange: $e(A)_{\mathrm{ij}}=\mathrm{A}_{\mathrm{kj}}, e(A)_{\mathrm{kj}}=\mathrm{A}_{\mathrm{ij}}$

In defining $\boldsymbol{e}(\boldsymbol{A})$, it is not really important how many columns A has, but the number of rows of \boldsymbol{A} is crucial.

Inverse of Elementary Row Operation

Theorem

The inverse operation (function) of an elementary row operation exists and is an elementary row operation of the same type.

Proof:

Definition

If A and B are $m \times n$ matrices over the field F, we say that B is row-equivalent to A if B can be obtained from A by a finite sequence of elementary row operations.

Note (from pervious theorem and this definition)
\square Each matrix is row-equivalent to itself
\square If B is row-equivalent to A, then A is row-equivalent to B.
\square If B is row-equivalent to A, C is row-equivalent to B , then C is rowequivalent to A

Elementary Matrices

Elementary Matrices

Definition

A $m \times n$ matrix is an elementary matrix if it can be obtained from the $m \times m$ identity matrix by means of a single elementary row operation.

Example

Find all 2×2 elementary matrices.

Elementary Matrices and Elementary Row Operation

Theorem

Let e be an elementary row operation and let E be the $m \times m$ elementary matrix $E=e(I)$. Then, for every $m \times n$ matrix A :

$$
e(A)=E A
$$

Proof:

Multiplication of a matrix on the left by a square matrix performs row operations.

Elementary Matrices

Example

(From theorem)

$\left.\begin{array}{|c|c|c|}\hline \text { Matrix } & \text { Elementary row operation } & \text { Elementary matrix } \\ \hline\left[\begin{array}{ccc}1 & 0 & 2 \\ -2 & 0 & -3 \\ 0 & 2 & 0\end{array}\right] & R_{2} \leftarrow R_{2}+2 R_{1} & M_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \\ \hline\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 2 & 0\end{array}\right] & R_{2} \leftrightarrow R_{3} & M_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \\ \hline\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right] & M_{3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right] \\ \hline\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] & R_{2}=\frac{1}{2} R_{2} & \\ \hline\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Row-Equivalent and Elementary Matrices

Theorem

Let A and B be $m \times n$ matrices. Then B is row-equivalent to A if and only if B $=P A$, where P is a product of $m \times m$ elementary matrices.

Linear Equations

Systems of Linear Equations

Definition

A system of m linear equations with n unknowns:

$\square F$ is a field, we want to find n scalars (elements of F) x_{1}, \ldots, x_{n} which satisfy the conditions: $\left(A_{i j}, y_{k}\right.$ are elements of $\left.F\right)$

$$
\begin{gathered}
A_{11} x_{1}+A_{12} x_{2}+\cdots+A_{1 n} x_{n}=y_{1} \\
A_{21} x_{1}+A_{22} x_{2}+\cdots+A_{2 n} x_{n}=y_{2} \\
\cdots \\
A_{m 1} x_{1}+A_{m 2} x_{2}+\cdots+A_{m n} x_{n}=y_{m}
\end{gathered}
$$

If $y_{1}=y_{2}=\cdots=y_{m}=0$, we say that the system is homogeneous.
A solution of this system of linear equations is vector $\left[\begin{array}{c}s_{1} \\ \vdots \\ s_{n}\end{array}\right]$ whose components satisfy $x_{1}=s_{1}, \ldots, x_{n}=s_{n}$

Linear Equation (Geometric Interpretation and Intuition)

- Consider this simple system of equations,

$$
\begin{gathered}
x-2 y=1 \\
3 x+2 y=11
\end{gathered}
$$

- Can be expressed as a matrix-vector multiplication
- Matrix Equation: $A x=b$

$$
\underbrace{\left[\begin{array}{cc}
1 & -2 \\
3 & 2
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
1 \\
11
\end{array}\right]}_{\sigma}
$$

- A is often called coefficient matrix: $\left[\begin{array}{cc}1 & -2 \\ 3 & 2\end{array}\right]$
- $A b$ is an Augmented matrix: $\left[\begin{array}{ccc}1 & -2 & 1 \\ 3 & 2 & 11\end{array}\right]$

Vectors \& Linear Equation

- Also, Can be expressed as linear combination of cols:

$$
\begin{gathered}
x-2 y=1 \\
3 x+2 y=11
\end{gathered}
$$

$x\left[\begin{array}{l}1 \\ 3\end{array}\right]+y\left[\begin{array}{c}-2 \\ 2\end{array}\right]=\left[\begin{array}{c}1 \\ 11\end{array}\right]=b$

\square Same for n equation, n variable

- Subtract a multiple of equation (1) from (2) to eliminate a variable

$$
\begin{gathered}
\begin{array}{c}
\begin{array}{c}
x-2 y=1 \\
3 x+2 y=11
\end{array} \\
\underbrace{\text { multipl equation } 1 \text { by } 3}_{\text {Subtract to e eliminate } 3 x}
\end{array}
\end{gathered} \begin{array}{r}
x-2 y=1 \\
8 y=8
\end{array}
$$

A has become a upper triangle matrix U

Idea Of Elimination (Row Reduction Algorithm)

- The pivots are on the diagonal of the triangle after elimination (boldface 2 below is the first pivot)

$$
\begin{aligned}
2 x+4 y-2 z & =2 \\
4 x+9 y-3 z & =8 \\
-2 x-3 y+7 z & =10
\end{aligned}
$$

\square Step 1: subtract (1) from (2) to eliminate x's in (2)
Step 2: subtract (1) from (3) to totally eliminate x

- Step 3: subtract new (2) from new (3)

Definition

The variables corresponding to pivot columns in the matrix are called basic variables.
The other variables are called a free variable.
$\left[\begin{array}{llll}x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & 0 & x\end{array}\right] \quad\left[\begin{array}{llll}x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & x\end{array}\right]$

Theorem

If A and B are row-equivalent $m \times n$ matrices, the homogenous systems of linear equations $A x=0$ and $\mathrm{B} x=0$ have exactly the same solutions.

Proof:

Example

Find the solution for this system.
Suppose F is the field of complex number and the coefficient matrix is:

$$
A=\left[\begin{array}{cc}
-1 & i \\
-i & 3 \\
1 & 2
\end{array}\right]
$$

Solution of system of linear equations

Definition

The two systems of linear equations are equivalent if each equation in each system is a linear combination of the equations in other system.

Theorem

Equivalent systems of linear equations have exactly the same solutions.
Proof:

Note

It is important to note that row operations are reversible. If two rows are interchanged, they can be returned to their original positions by another interchange.
If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

- A system of linear equations has:
- No solution \longrightarrow inconsistent
- Exactly one solution
- Infinitely many solutions

Next session:

1. Is the system consistent? That is, does at least one solution exist?
2. If a solution exists, is it the only one? That is, is the solution unique?

- Different view of matrix multiplication
- Linear combination and matrix multiplication
- Associativity of three matrices multiplication
- Gaussian Elimination
- Row-equivalent of two matrices
- Elementary matrices
- System of linear equations
- Equivalent systems of linear equations have exactly the same solutions.
- Chapter 1: Kenneth Hoffman and Ray A. Kunze. Linear Algebra. PHI Learning, 2004.
a Chapter 1: David C. Lay, Steven R. Lay, and Judi J. McDonald. Linear Algebra and Its Applications. Pearson, 2016
- Chapter 2: David Poole, Linear Algebra: A Modern Introduction. Cengage Learning, 2014.
- Chaper1: Gilbert Strang. Introduction to Linear Algebra. WellesleyCambridge Press, 2016

