Elementary Row Operations
and Linear Equations

Linear Algebra
Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu

Maryam Ramezani maryam.ramezani@sharif.edu



mailto:rabiee@sharif.edu
mailto:maryam.ramezani@sharif.edu

Overview

) Matrix Multiplication

> Elementary Row Operations

> Elementary Matrices
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Matrix Multiplication
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Basic Notation

o By A € R™*™ we denote a matrix with m rows and n columns,
where the entries of A are real numbers.

(A11 Q12 QAqp ] | | | — al =7
a a ea _ 4T _
A=|720 T M=lan a0 an| = @2
Am1 Am2  ° Amn] | | | | — a,fl —
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Matrix—Vector Multiplication

O If we write A by rows, then we can express Ax as,

= T = = T =
- a1 - alx
n
mxn — al - alx T
A€eER y=Ax = 2 x=|"2"]. a; x = a;jx
. . =
— al, —. lal x|

a If we write A by columns, then we have:

| Al
y=dx=|a ay - an|[?| = laslx, + [aglx, + - + [anlx,

| mips
o VY is a linear combination of the columns A.
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Matrix—Vector Multiplication

It is also possible to multiply on the left by a row vector.
If we write A by columns, then we can express x' A as,

O

yI =xT4A =xT [al Ay - an] = [xTa; xTa, xTa,]
o expressing A in terms of rows we have: - )
T T - a -—
y =X A = [x1 xz °et xm] .2
— al, —]

=ml- o —J4ml- a Jeerxpl- o -l
o yT is a linear combination of the rows of A.

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani



Matrix—Vector Multiplication

a0 Properties

o Alu+v)=Au+ Av

o (A+ B)u=Au+ Bu

o

o Ou=20
o A0=0
o Iu=u
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(xd)u = a(Au) = A(au) = adu
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Matrix—Vector Multiplication

Q191 Q9 Qg ] | | | — a; —]

a a a S
A=|"2 22 M=la, a, - a,|= az

Gy Gy v G | | =

Example: Write in matrix—vector multiplication

- Column j: a; =

- Rowi:a] =

- Vector sum of rows of 4 =

- Vector sum of columns of 4 =

A= [_21 g —12]
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Matrix—Matrix Multiplication

Definition

Let A be an mXn matrix over the field F and let B be an nXp matrix over F.
The product AB is the mXp matrix C whose i, ] entry is:

n
Cij — Z AirBrj
r=1
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Matrix—Matrix Multiplication

o A€R™" BeR"P > RM™XP
o a; rows of A, b; cols of B

C =AB for1<i<m,1<j<p
inner product (a;. bj)
Cij = aTb]
Example
! ‘f 0
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Matrix—Matrix Multiplication (different views)

1. As a set of vector—vector products

— al - L | alb, alb, aj by,
T T T T
c=AB=|" %2 ~||p, b, b,| = a; b, az.bz a; by,
| | . 3
- ap - | lal' b, alb, an b,
2. As a sum of outer products
= T -
— b - ,
o ME & =
C=AB=|a; a, - au 2 — Z aibiT
| | | :T i=1
— b, —

11
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Matrix—Matrix Multiplication (different views)

3. As a set of matrix—vector products.

C:ABZA b1 bz bp = Ab1

Here the th column of C is given by the matrix—vector product with the vector on the right,
c; = Ab;. These matrix—vector products can in turn be interpreted using both viewpoints

given in the previous subsection.
4. As a set of vector—matrix products.
__ a’]]:' _

. T
C =A4B = 42 B =

— am - —~

alB
a’B

al. B
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Matrix—Matrix Multiplication

o Properties:

o Associative

(AB)C = A(BC)

o Distributive

A(B+C) = AB + AC

o NOT commutative

AB + BA

— Dimensions may not even be conformable
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Matrix—Matrix Multiplication

Theorem

If A, B, C are matrices over the field F such that the products BC and A(BC) is
defined, then so are the products AB, (AB)C and

A(BC) = (AB)C

Proof:

Note

Linear combinations of linear combinations of the rows of C are again linear
combinations of the rows of C
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Matrix Power

O A*:repeated multiplication of a square matrix

A' = A A2 = AA, ..., A = AA--A
k Yatrices
O Properties:
o AAk = Ak
o (A)k = Ak

O For diagonal matrices:

where j and k are non-negative integers and A° is assumed to be |

d;, 0 - 0] _df 0 -« 0]
po|0 @ 0|apeofo @ o

L0 0 - dyl 0 0 - dkl
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Elementary Row Operations
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Gaussian Elimination: Elementary Row Operations

0 Elementary Row Operations
1. Scaling: Multiply all entries in a row by a nonzero scalar.
2. Replacement: Replace one row by the sum of itself and a multiple of another row.
3. Interchange: Interchange two rows.

o Elementary Row Operation is a special type of function e on mXxn
matrix A and gives an mXn matrix e(A)

1. Scaling : e(A);; = cAj;
2. Replacement: e(A);; = A;j + cAg;
3. Interchange: e(A4);; = Ay; ,e(A)y = Aj

In defining e(A), it is not really important how many columns A has, but the number of rows of 4 is crucial.
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Inverse of Elementary Row Operation

Theorem
The inverse operation (function) of an elementary row operation exists and is an
elementary row operation of the same type.

Proof:
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Row—-Equivalent

Definition

If A and B are mXn matrices over the field F, we say that B is
row—equivalent to A if B can be obtained from A by a finite sequence of

elementary row operations.

Note (from pervious theorem and this definition)

O Each matrix is row—equivalent to itself
O If B is row—equivalent to A, then A is row—equivalent to B.

O If B is row—equivalent to A, C is row—equivalent to B, then C is row—
equivalent to A
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Elementary Matrices

Definition

A mXn matrix is an elementary matrix if it can be obtained from the mxm
identity matrix by means of a single elementary row operation.

Example

Find all 2x2 elementary matrices.
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Elementary Matrices and Elementary Row Operation

Theorem

Let e be an elementary row operation and let E be the mXm elementary
matrix E = e(l). Then, for every mxn matrix A:
e(A) = EA

Proof:

Multiplication of a matrix on the left by a square matrix performs row operations.
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Elementary Matrices

Example

“ Elementary row operation Elementary matrix

1 0 2 1 0 0
2 0 =8 Ry « Ry + 2R, My=12 1.0
0 2 0 0 0 1
1 0 2] 1 0 0
00 1 R, & R, My=[0o 0 1
0 2 ol 0 1 0
1 0 2] 100
(From theorem) 0 2 0 " 1
0 0 1. Ry < 5 Ry Ma=10 35 0
0 0 1
M, (M3 (M3 (M1 4))) é (1) 3 o _[é (1) _02]
= Ry <« Ry + (—2)R 4
00 1 1 < Rt (C2)R; 00 1
(M, (M3 (M, M,))) A —
01 0
0 0 1
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Row—Equivalent and Elementary Matrices

Theorem

Let A and B be mXn matrices. Then B is row—equivalent to A if and only if B
= PA, where P is a product of mXm elementary matrices.
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Systems of Linear Equations

Definition

A system of m linear equations with n unknowns:
O F is a field, we want to find n scalars (elements of F) x, ..., x,, which
satisfy the conditions: (4}, y) are elements of F)
A11x1 + Agpxy + o+ Ay = 1
Ax1Xx1 + AgpXxy + o+ AppXn = 2

Am1x1 + Apaxy + -+ A Xy = Y
If y, =y, =+ =1y, =0, we say that the system is homogeneous.
S1
A solution of this system of linear equations is vector l : ] whose
Sn

components satisfy x; = 54, ...,x, = s,
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0 Consider this simple system of equations, 14
x—2y=1
3x + 2y = 11

~
o Can be expressed as a matrix—vector multiplication

O Matrix Equation: Ax=b
o % 1G0= (]
T T 2
a A is often called coefficient matrix: [3 2 ]

—2 1]

O Ab is an Augmented matrix: B ) 11
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Vectors & Linear Equation

O Also, Can be expressed as linear combination of cols:
x —2y=1
3x + 2y =11
BJ = 3 (column 1)

B SIB=0 |

\TJ 3(column 1) + 1(column 2) = b ]

A— B column2 |
1 U = column ,’/

T T I N |

| | | | | | | | |

1 Same for n equation, n variable
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Idea Of Elimination

O Subtract a multiple of equation (1) from (2) to eliminate a variable

X — Zy — 1 multiply equation 1 by 3
—
3x +2y =11

Subtract to eliminate 3x

o s1b]=ls

—x

A has become a upper triangle matrix U

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 29



Idea Of Elimination (Row Reduction Algorithm)

O The pivots are on the diagonal of the triangle after elimination
(boldface 2 below is the first pivot)

2x +4y — 2z =2 2x +4y — 2z =2
4x +9y — 3z =8

.1y+1z=4
—2x—3y+7z=10 4z =8

O Step 1: subtract (1) from (2) to eliminate x’s in (2)
O Step 2: subtract (1) from (3) to totally eliminate x
O Step 3: subtract new (2) from new (3)

Definition

The variables corresponding to pivot columns in the matrix are called
basic variables. X X ox X roxx
. . 0 x x x X X X
The other variables are called a free variable. lg 8 A 8 8 X
X
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Homogenous system

Theorem

If A and B are row—equivalent mXn matrices, the homogenous systems of

linear equations Ax = 0 and Bx = 0 have exactly the same solutions.
Proof:
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Homogenous system

Example

Find the solution for this system.
Suppose F is the field of complex humber and the coefficient matrix is:

-1 i
—i 3

1 2

A=
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Solution of system of linear equations

Definition

The two systems of linear equations are equivalent if each equation in each system is a
linear combination of the equations in other system.

Theorem

Equivalent systems of linear equations have exactly the same solutions.

Proof:

Note

Q It is important to note that row operations are reversible. If two rows are interchanged,
they can be returned to their original positions by another interchange.

Q If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.



Existence and Uniqgueness Questions

o A system of linear equations has:

o No solution ——» inconsistent

o Exactly one solution _
. ) — consistent
o Infinitely many solutions

Next session:

1. Is the system consistent? That is, does at least one solution exist?
2. If a solution exists, is it the only one? That is, is the solution unique?
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Conclusion

a
a
a
a
a
a

Different view of matrix multiplication

Linear combination and matrix multiplication
Associativity of three matrices multiplication
Gaussian Elimination

Row—equivalent of two matrices

Elementary matrices

System of linear equations

Equivalent systems of linear equations have exactly the same
solutions.
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